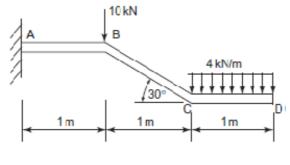
Tanta	Department: Production Engineering & Mechanical Design	Faculty of
University	Total marks: 40 Marks	Engineering

·------


Course Title: Strength of Materials and Stress Analysis **Course Code:** MPD (Summer Course)

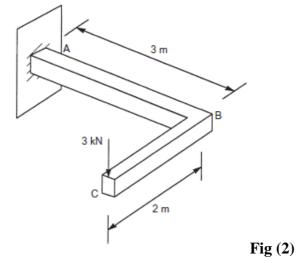
Course Code: MPD (Summer Course)Allowed time: 3 hrs.Year: 1st level Mechatronics(Final Term Exam)No. of pages: 2

Answer all the following questions: (Assume any missing data)

Q1. (5 marks)

a- Draw normal force, shear force and bending moment diagrams for the cranked cantilever beam shown in Figure 1. Insert all the principal values.

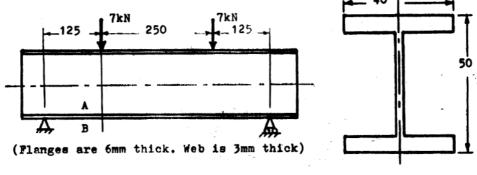
Fig (1)


Q2. (15 marks)

- a) The cranked cantilever ABC shown in Fig. 2 carries a load of 3 kN at its free end. And have square cross section 5x5 cm². Determine the following:
 - 1- The maximum tensile and the maximum shear stresses in the rod by the following.
 - **a-** Analytical method

b- Graphical method

Date: 29-8-2019


- **2-** Draw the stress distribution at cross section A.
- **3-** Draw shear force, bending moment and torsion diagrams for the complete beam.

Page 1 of 2

- 1- For the beam shown in Fig. 3. Find the factor of safety using:
 - 1) Maximum shear stress theory.
 - **2)** Maximum distortion energy theory.
 - 3) Draw the bending moment diagram.

Take the tensile yield strength of the material as 300 MPa.

Fig (3)

2- A thin-walled spherical shell is fabricated from steel plates and has to withstand an internal pressure of 0.75 N/mm². The internal diameter is 3 m and the joint efficiency 80%. Calculate the thickness of plates required using a working stress of 80 N/mm². (Note, effective thickness of plates 50.83 actual thickness).

Q3. (5 marks)

- 1. The composite bar shown is firmly attached to unyielding supports at the ends and is subjected to the axial load P shown. If the aluminum is stressed to **10,000** psi, find the stress in the steel.
 - **A.** 1000 psi
 - **B.** 2000 psi
 - **C.** 5000 psi
 - **D.** 10,000 psi
 - **E.** 20,000 psi

10in. 15in. P Steel

A=1.5 in²
E=10x10⁶ psi

A=2.0 in²
E=30x10⁶ psi

Also, draw the deformation in the composite bar?

With my best wishes

Dr. Eng. Maher . R. Elsadaty